Skip to main content\(\require{colortbl}\usepackage{amsmath}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\E}{\mathbb{E}}
\DeclareMathOperator{\ch}{char}
\newcommand{\N}{\mathbb{N}}
\newcommand{\W}{\mathbb{W}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\J}{\mathbb{J}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\D}{\mathbb{D}}
\newcommand{\M}{\mathcal{M}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\NE}{\mathcal{E}}
\newcommand{\Mn}[1]{\mathcal{M}_{#1 \times #1}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\Rn}{\R^n}
\newcommand{\Mat}{\mathbf}
\newcommand{\Seq}{\boldsymbol}
\newcommand{\seq}[1]{\boldsymbol{#1}}
\newcommand{\set}[1]{\mathcal{#1}}
\newcommand{\abs}[1]{\left\lvert{}#1\right\rvert}
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
\newcommand{\cq}{\scalebox{.34}{\pscirclebox{ \textbf{?}}}}
\newcommand{\cqup}{\,$^{\text{\scalebox{.2}{\pscirclebox{\textbf{?}}}}}$}
\newcommand{\cqupmath}{\,^{\text{\scalebox{.2}{\pscirclebox{\textbf{?}}}}}}
\newcommand{\cqupmathnospace}{^{\text{\scalebox{.2}{\pscirclebox{\textbf{?}}}}}}
\newcommand{\uspace}[1]{\underline{}}
\newcommand{\muspace}[1]{\underline{\mspace{#1 mu}}}
\newcommand{\bspace}[1]{}
\newcommand{\ie}{\emph{i}.\emph{e}.}
\newcommand{\nq}[1]{\scalebox{.34}{\pscirclebox{\textbf{#1}}}}
\newcommand{\equalwhy}{\stackrel{\cqupmath}{=}}
\newcommand{\notequalwhy}{\stackrel{\cqupmath}{\neq}}
\newcommand{\Ker}{\text{Ker}}
\newcommand{\Image}{\text{Im}}
\newcommand{\polyp}{p(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots a_2x^2 + a_1x + a_0}
\newcommand{\GL}{\text{GL}}
\newcommand{\SL}{\text{SL}}
\newcommand{\lcm}{\text{lcm}}
\newcommand{\Aut}{\text{Aut}}
\newcommand{\Inn}{\text{Inn}}
\newcommand{\Hol}{\text{Hol}}
\newcommand{\cl}{\text{cl}}
\newcommand{\bsq}{\hfill $\blacksquare$}
\newcommand{\NIMdot}{{ $\cdot$ }}
\newcommand{\eG}{e_{\scriptscriptstyle{G}}}
\newcommand{\eGroup}[1]{e_{\scriptscriptstyle{#1}}}
\newcommand{\Gdot}[1]{\cdot_{\scriptscriptstyle{#1}}}
\newcommand{\rbar}{\overline{r}}
\newcommand{\nuG}[1]{\nu_{\scriptscriptstyle{#1}}}
\newcommand{\rightarray}[2]{\left[ \begin{array}{#1} #2 \end{array} \right]}
\newcommand{\polymod}[1]{\mspace{5 mu}(\text{mod} #1)}
\newcommand{\ts}{\mspace{2 mu}}
\newcommand{\ds}{\displaystyle}
\newcommand{\adj}{\text{adj}}
\newcommand{\pol}{\mathbb{P}}
\newcommand{\CS}{\mathcal{S}}
\newcommand{\CC}{\mathcal{C}}
\newcommand{\CB}{\mathcal{B}}
\renewcommand{\CD}{\mathcal{D}}
\newcommand{\CP}{\mathcal{P}}
\newcommand{\CQ}{\mathcal{Q}}
\newcommand{\CW}{\mathcal{W}}
\newcommand{\rank}{\text{rank}}
\newcommand{\nullity}{\text{nullity}}
\newcommand{\trace}{\text{trace}}
\newcommand{\Area}{\text{Area}}
\newcommand{\Vol}{\text{Vol}}
\newcommand{\cov}{\text{cov}}
\newcommand{\var}{\text{var}}
\newcommand{\va}{\mathbf{a}}
\newcommand{\vb}{\mathbf{b}}
\newcommand{\vc}{\mathbf{c}}
\newcommand{\vd}{\mathbf{d}}
\newcommand{\ve}{\mathbf{e}}
\newcommand{\vf}{\mathbf{f}}
\newcommand{\vg}{\mathbf{g}}
\newcommand{\vh}{\mathbf{h}}
\newcommand{\vm}{\mathbf{m}}
\newcommand{\vn}{\mathbf{n}}
\newcommand{\vp}{\mathbf{p}}
\newcommand{\vq}{\mathbf{q}}
\newcommand{\vr}{\mathbf{r}}
\newcommand{\vs}{\mathbf{s}}
\newcommand{\vx}{\mathbf{x}}
\newcommand{\vy}{\mathbf{y}}
\newcommand{\vu}{\mathbf{u}}
\newcommand{\vv}{\mathbf{v}}
\newcommand{\vw}{\mathbf{w}}
\newcommand{\vz}{\mathbf{z}}
\newcommand{\vzero}{\mathbf{0}}
\newcommand{\vi}{\mathbf{i}}
\newcommand{\vj}{\mathbf{j}}
\newcommand{\vk}{\mathbf{k}}
\newcommand{\vF}{\mathbf{F}}
\newcommand{\vP}{\mathbf{P}}
\newcommand{\nin}{}
\newcommand{\Dom}{\text{Dom}}
\newcommand{\tr}{\mathsf{T}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\Row}{\text{Row }}
\newcommand{\Col}{\text{Col }}
\newcommand{\Nul}{\text{Nul }}
\newcommand{\Span}{\text{Span}}
\newcommand{\Range}{\text{Range}}
\newcommand{\Domain}{\text{Domain}}
\newcommand{\hthin}{\hlinewd{.1pt}}
\newcommand{\hthick}{\hlinewd{.7pt}}
\newcommand{\pbreaks}{1}
\newcommand{\pbreak}{
}
\newcommand{\lint}{\underline{}
\int}
\newcommand{\uint}{ \underline{}
\int}
\newcommand{\Si}{\text{Si}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix B Answers and Hints for Selected Exercises
I Systems of Linear Equations
1 Introduction to Systems of Linear Equations
 Exercises
1.
1.a
1.b
3.
5.
5.a
5.b
7.
7.a
7.b
7.c
7.d
9.
9.a
9.b
11. True/False Questions.
11.a True/False.
11.c True/False.
11.e True/False.
2 The Matrix Representation of a Linear System
 Exercises
1.
1.a
1.b
1.c
3.
5.
6.
6.a True/False.
6.c True/False.
6.e True/False.
6.g True/False.
6.i True/False.
6.k True/False.
3 Row Echelon Forms
 Exercises
1.
3.
5.
7.
7.a
7.b
9.
11.
12.
12.a True/False.
12.c True/False.
12.e True/False.
12.g True/False.
12.i True/False.
12.k True/False.
4 Vector Representation
 Exercises
1.
3.
5.
5.a
5.b
5.c
7.
7.a
7.b
9.
11.
11.a True/False.
11.c True/False.
11.e True/False.
11.g True/False.
11.i True/False.
11.k True/False.
11.m True/False.
5 The Matrix-Vector Form of a Linear System
 Exercises
1.
3.
5.
7.
7.a
7.b
9.
11.
13.
14.
14.a True/False.
14.c True/False.
14.e True/False.
14.g True/False.
14.i True/False.
14.k True/False.
6 Linear Dependence and Independence
 Exercises
1.
3.
5.
5.a
5.b
7.
9.
9.a True/False.
9.c True/False.
9.e True/False.
9.g True/False.
9.i True/False.
9.k True/False.
7 Matrix Transformations
 Exercises
1.
3.
5.
7.
9.
11.
12.
12.a True/False.
12.c True/False.
12.e True/False.
12.g True/False.
12.i True/False.
12.k True/False.
12.m True/False.
12.o True/False.
II Matrices
8 Matrix Operations
 Exercises
1.
1.a
1.b
3.
3.a
3.b
3.c
5.
7.
9.
9.a
9.c
9.e
9.g
11.
11.a
11.c
13.
14.
14.a True/False.
14.c True/False.
14.e True/False.
14.g True/False.
9 Introduction to Eigenvalues and Eigenvectors
 Exercises
1.
1.a
1.b
1.c
3.
3.a
3.b
3.c
3.d
5.
5.a
5.b
5.c
6.
6.a True/False.
6.c True/False.
6.e True/False.
6.g True/False.
6.i True/False.
6.k True/False.
10 The Inverse of a Matrix
 Exercises
1.
2.
2.a
3.
3.a
3.b
3.c
5.
8.
8.a True/False.
8.c True/False.
8.e True/False.
8.g True/False.
8.i True/False.
11 The Invertible Matrix Theorem
 Exercises
1.
3.
3.a True/False.
3.c True/False.
3.e True/False.
3.g True/False.
III The Vector Space \(\R^n\)
12 The Structure of \(\R^n\)
 Exercises
1.
1.a
1.b
1.c
1.d
3.
5.
7.
7.a
7.a.i
7.a.ii
7.a.iii
7.a.iv
7.b
7.c
9.
11.
14.
14.a True/False.
14.c True/False.
14.e True/False.
14.g True/False.
14.i True/False.
14.k True/False.
13 The Null Space and Column Space of a Matrix
 Exercises
1.
3.
5.
7.
8.
8.a True/False.
8.c True/False.
8.e True/False.
8.g True/False.
8.i True/False.
14 Eigenspaces of a Matrix
 Exercises
1.
1.a
1.b
1.c
1.d
1.e
1.f
3.
5.
5.a
5.b
6.
6.a True/False.
6.c True/False.
6.e True/False.
6.g True/False.
15 Bases and Dimension
 Exercises
1.
1.a
1.b
3.
3.a
3.b
3.c
3.d
5.
5.a
5.b
7.
8.
9.
11.
11.a
11.b
13.
13.a True/False.
13.c True/False.
13.e True/False.
13.g True/False.
13.i True/False.
13.k True/False.
16 Coordinate Vectors and Change of Basis
 Exercises
1.
3.
5.
7.
7.a
7.b
9.
11.
11.a
11.b
11.c
13.
14.
14.a True/False.
14.c True/False.
14.e True/False.
14.g True/False.
14.i True/False.
14.k True/False.
IV Eigenvalues and Eigenvectors
17 The Determinant
 Exercises
1.
3.
3.a
3.b
3.c
5.
7.
7.a True/False.
7.c True/False.
7.e True/False.
7.g True/False.
7.i True/False.
7.k True/False.
18 The Characteristic Equation
 Exercises
1.
1.a
1.b
1.b.i
1.b.ii
1.b.iii
3.
5.
6.
6.a True/False.
6.c True/False.
6.e True/False.
6.g True/False.
6.i True/False.
19 Diagonalization
 Exercises
1.
1.a
1.b
3.
5.
7.
7.a
7.b
9.
9.a
9.b
9.b.i
9.b.ii
11.
11.a
11.b
11.c
11.d
13.
13.a
13.b
15.
15.a True/False.
15.c True/False.
15.e True/False.
15.g True/False.
15.i True/False.
20 Approximating Eigenvalues and Eigenvectors
 Exercises
1.
1.a
1.b
1.c
1.d
3.
5.
7.
7.a
7.b
7.c
7.d
7.d.i
7.d.ii
7.d.iii
9.
10.
10.a True/False.
10.c True/False.
21 Complex Eigenvalues
 Exercises
1.
1.a
1.b
1.c
3.
5.
7.
7.a
7.b
8.
8.a True/False.
8.c True/False.
8.e True/False.
22 Properties of Determinants
 Exercises
1.
3.
3.a
3.b
3.c
3.d
5.
7.
7.a
7.b
9.
12.
12.b
13.
13.a True/False.
13.c True/False.
13.e True/False.
13.g True/False.
V Orthogonality
23 The Dot Product in \(\R^n\)
 Exercises
1.
1.a
1.b
1.c
1.d
1.e
3.
5.
7.
7.a
7.b
9.
11.
13.
15.
15.a True/False.
15.c True/False.
15.e True/False.
15.g True/False.
15.i True/False.
15.k True/False.
15.m True/False.
15.o True/False.
15.q True/False.
24 Orthogonal and Orthonormal Bases in \(\R^n\)
 Exercises
1.
3.
3.a
3.b
3.c
3.d
5.
7.
7.a
7.b
7.c
9.
9.a True/False.
9.c True/False.
9.e True/False.
9.g True/False.
9.i True/False.
25 Projections onto Subspaces and the Gram-Schmidt Process in \(\R^n\)
 Exercises
1.
1.a
1.b
3.
5.
7.
7.a
7.b
7.c
9.
9.a
9.b
11.
11.a
11.b
11.c
11.d
12.
12.a True/False.
12.c True/False.
12.e True/False.
12.g True/False.
26 Least Squares Approximations
 Exercises
1.
1.a
1.b
3.
5.
5.a
5.b
5.c
5.d
6.
6.b
7.
7.a
7.b
7.c
7.d
7.e
9.
9.a True/False.
9.c True/False.
9.e True/False.
VI Applications of Orthogonality
27 Orthogonal Diagonalization
 Exercises
1.
1.a
1.b
1.c
3.
5.
5.a
5.b
5.c
5.d
5.e
5.f
5.g
6.
7.
7.a
7.b
7.b.i
7.b.ii
7.b.iii
7.b.iv
7.b.v
7.c
8.
8.a True/False.
8.c True/False.
8.e True/False.
8.g True/False.
8.i True/False.
8.k True/False.
28 Quadratic Forms and the Principal Axis Theorem
 Exercises
1.
1.a
1.b
1.c
3.
3.a
3.a.i
3.a.ii
3.a.iii
3.b
5.
5.a
5.b
5.c
5.d
7.
9.
11.
11.a
11.b
13.
14.
14.a True/False.
14.c True/False.
14.e True/False.
14.g True/False.
14.i True/False.
14.k True/False.
14.m True/False.
14.o True/False.
29 The Singular Value Decomposition
 Exercises
1.
1.a
1.b
1.c
1.d
1.e
2.
2.a
3.
3.a
3.b
3.c
3.c.i
3.c.ii
3.c.iii
4.
4.b
5.
7.
9.
11.
11.a True/False.
11.c True/False.
11.e True/False.
11.g True/False.
30 Using the Singular Value Decomposition
 Exercises
1.
1.a
1.b
1.c
1.d
3.
3.a
3.b
3.c
4.
4.b
4.b.iii
5.
5.a
5.b
5.c
5.d
5.e
6.
6.a
7.
7.a
7.b
7.c
9.
10.
10.a True/False.
10.c True/False.
10.e True/False.
VII Vector Spaces
31 Vector Spaces
 Exercises
1.
1.a
1.b
1.c
4.
6.
8.
10.
12.
12.a
12.b
12.c
12.d
12.e
12.f
14.
14.a True/False.
14.c True/False.
14.e True/False.
14.g True/False.
14.i True/False.
32 Bases for Vector Spaces
 Exercises
1.
1.a
1.b
1.c
1.d
3.
5.
7.
9.
10.
11.
13.
13.a True/False.
13.c True/False.
13.e True/False.
13.g True/False.
13.i True/False.
13.k True/False.
33 The Dimension of a Vector Space
 Exercises
1.
3.
3.a
3.b
3.c
3.d
5.
7.
8.
8.b
9.
11.
11.a
11.b
12.
12.a True/False.
12.c True/False.
12.e True/False.
12.g True/False.
12.i True/False.
12.k True/False.
34 Coordinate Vectors and Coordinate Transformations
 Exercises
1.
3.
5.
7.
7.a
7.b
7.b.i
7.b.ii
9.
9.a
9.b
9.c
11.
13.
13.a
13.b
15.
17.
17.a True/False.
17.c True/False.
17.e True/False.
17.g True/False.
17.i True/False.
35 Inner Product Spaces
 Exercises
1.
3.
3.a
3.b
5.
5.a
5.b
7.
7.a
7.b
9.
9.a
9.b
11.
11.a
11.b
11.c
13.
13.a
13.b
13.c
15.
15.a
15.b
15.c
15.d
16.
17.
19.
19.a True/False.
19.c True/False.
19.e True/False.
19.g True/False.
19.i True/False.
19.k True/False.
19.m True/False.
19.o True/False.
36 The Gram-Schmidt Process in Inner Product Spaces
 Exercises
1.
1.a
1.b
1.c
3.
3.a
3.b
5.
7.
7.a
7.b
9.
9.a True/False.
9.c True/False.
9.e True/False.
VIII Linear Transformations
37 Linear Transformations
 Exercises
1.
3.
3.a
3.b
3.c
5.
5.a
5.b
7.
9.
10.
11.
13.
13.a
13.b
16.
16.a
16.b
19.
19.a True/False.
19.c True/False.
19.e True/False.
19.g True/False.
19.i True/False.
38 The Matrix of a Linear Transformation
 Exercises
1.
1.a
1.b
1.c
1.d
1.e
1.f
1.g
3.
3.a
3.b
5.
7.
7.a
7.b
7.c
8.
8.b
8.d
9.
9.a True/False.
9.c True/False.
9.e True/False.
9.g True/False.
9.i True/False.
39 Eigenvalues of Linear Transformations
 Exercises
1.
1.a
1.b
1.c
1.d
3.
3.a
3.b
3.c
5.
5.a
5.b
5.c
6.
6.a True/False.
6.c True/False.
6.e True/False.
6.g True/False.
40 The Jordan Canonical Form
 Exercises
1.
1.a
1.b
1.c
1.d
3.
5.
7.
8.
8.e
9.
9.a
9.b
9.b.i
9.b.ii
9.b.iii
11.
11.a
11.b
13.
15.
17.
19.
21.
21.a
21.a.i
21.a.ii
21.b
23.
25.
25.a True/False.
25.c True/False.
25.e True/False.
25.g True/False.
25.i True/False.
25.k True/False.
25.m True/False.