Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\R}{\mathbb R}
\newcommand{\Q}{\mathbb Q}
\newcommand{\mynot}{\neg}
\newcommand{\card}{\mathbf{card}}
\newcommand{\x}{:}
\newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)}
\DeclarePairedDelimiter\abs{\lvert}{\rvert}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 3.7 Chapter 3 Summary
Subsection Important Definitions
Subsection Important Theorems and Results about Even and Odd Integers
Subsection Important Theorems and Results about Divisors
Subsection The Division Algorithm
Let \(a\) and \(b\) by integers with \(b \gt 0\text{.}\) Then there exist unique integers \(q\) and \(r\) such that
\begin{equation*}
a = bq + r \text{ and } 0 \leq r \lt b\text{.}
\end{equation*}
Subsection Important Theorems and Results about Congruence