Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\R}{\mathbb R}
\newcommand{\Q}{\mathbb Q}
\newcommand{\mynot}{\neg}
\newcommand{\card}{\mathbf{card}}
\newcommand{\x}{:}
\newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)}
\DeclarePairedDelimiter\abs{\lvert}{\rvert}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix B Answers for the Progress Checks
1 Introduction to Writing Proofs in Mathematics
1.1 Statements and Conditional Statements
Statements
Progress Check 1.1. Statements.
1.1.a
1.1.b
1.1.c
1.1.d
1.1.e
1.1.f
1.1.g
1.1.h
1.1.i
Techniques of Exploration
Progress Check 1.2. Explorations.
1.2.a
1.2.b
1.2.c
1.2.d
Conditional Statements
Progress Check 1.5. Explorations with Conditional Statements.
1.5.a
1.5.a.i
1.5.a.ii
1.5.a.iii
1.5.b
Further Remarks about Conditional Statements
Progress Check 1.6. Working with a Conditional Statement.
1.6.a
1.6.b
1.6.c
1.6.d
Closure Properties of Number Systems
Progress Check 1.8.
1.8.a
1.8.b
1.8.c
1.2 Constructing Direct Proofs
Writing Guidelines for Mathematics Proofs
Progress Check 1.11. Proving Propositions.
1.11.a
1.11.b
1.11.c
Some Comments about Constructing Direct Proofs
Progress Check 1.12. Exploring a Proposition.
Progress Check 1.13. Constructing and Writing a Proof.
2 Logical Reasoning
2.1 Statements and Logical Operators
Other Forms of Conditional Statements
Progress Check 2.3. The âOnly Ifâ Statement.
2.3.a
2.3.b
2.3.c
2.3.d
Constructing Truth Tables
Progress Check 2.5. Constructing Truth Tables.
2.5.d
Tautologies and Contradictions
Progress Check 2.7. Tautologies and Contradictions.
2.7.c
2.2 Logically Equivalent Statements
Another Method of Establishing Logical Equivalencies
Progress Check 2.11.
2.11.a
2.11.b
2.3 Open Sentences and Sets
Some Set Notation
Progress Check 2.14. Set Notation.
2.14.a
2.14.b
Variables and Open Sentences
Progress Check 2.16.
2.16.a
2.16.a.i
2.16.a.ii
2.16.b
2.16.b.i
2.16.b.ii
Set Builder Notation
Progress Check 2.18. Working with Truth Sets.
2.18.a
2.18.b
2.18.c
Progress Check 2.20. Set Builder Notation.
2.20.b
2.4 Quantifiers and Negations
Negations of Quantified Statements
Progress Check 2.26. Negating Quantified Statements.
2.26.a
2.26.b
2.26.c
2.26.d
2.26.e
Counterexamples and Negations of Conditional Statements
Progress Check 2.27. Using Counterexamples.
2.27.a
2.27.b
Quantifiers in Definitions
Progress Check 2.28. Multiples of Three.
2.28.a
2.28.d
2.28.e
Statements with More than One Quantifier
Progress Check 2.29. Negating a Statement with Two Quantifiers.
3 Constructing and Writing Proofs in Mathematics
3.1 Direct Proofs
Writing Guidelines for Equation Numbers
Progress Check 3.2. A Property of Divisors.
3.2.b
3.2.c
Using Counterexamples
Progress Check 3.3. Using a Counterexample.
Congruence
Progress Check 3.4. Congruence Modulo 8.
3.4.a
3.4.b
3.4.c
3.4.d
Progress Check 3.6. Proving Proposition 3.5.
3.6.a
3.6.b
3.6.c
3.6.d
3.6.e
3.2 More Methods of Proof
Using Other Logical Equivalencies
Progress Check 3.9. Using Another Logical Equivalency.
3.9.a
3.9.b
3.9.c
3.3 Proof by Contradiction
Writing Guidelines: Keep the Reader Informed
Progress Check 3.19. Starting a Proof by Contradiction.
3.19.a
3.19.b
3.19.c
3.19.d
Important Note
Progress Check 3.20. Exploration and a Proof by Contradiction.
3.20.a
3.20.b
3.20.c
Proving that Something Does Not Exist
Progress Check 3.22.
3.22.a
3.22.b
3.4 Using Cases in Proofs
Writing Guidelines for a Proof Using Cases
Progress Check 3.26. Using Cases: \(\boldsymbol{n}\) Is Even or \(\boldsymbol{n}\) Is Odd.
Absolute Value
Progress Check 3.29.
3.29.a
3.29.b
3.29.b.i
3.29.b.ii
3.29.b.iii
3.29.b.iv
3.5 The Division Algorithm and Congruence
The Division Algorithm
Progress Check 3.32. Using the Division Algorithm.
3.32.a
3.32.a.i
3.32.a.ii
3.32.b
3.32.b.i
3.32.b.ii
3.32.b.iii
3.32.b.iv
3.32.b.v
3.32.b.vi
Properties of Congruence
Progress Check 3.35. Proving Item 1 of Theorem 3.34.
Using Cases Based on Congruence Modulo \(\boldsymbol{n}\)
Progress Check 3.40. Using Properties of Congruence.
4 Mathematical Induction
4.1 The Principle of Mathematical Induction
Inductive Sets
Progress Check 4.1. Inductive Sets.
4.1.a
4.1.b
4.1.c
4.1.d
4.1.e
4.1.f
4.1.g
4.1.h
Summation Notation
Progress Check 4.3. An Example of a Proof by Induction.
4.3.b
Some Comments about Mathematical Induction
Progress Check 4.6. Proof of Proposition 4.5.
4.6.a
4.6.b
4.6.c
4.2 Other Forms of Mathematical Induction
Using the Extended Principle of Mathematical Induction
Progress Check 4.10. Formulating Conjectures.
4.10.a
4.10.b
4.10.c
Using the Second Principle of Mathematical Induction
Progress Check 4.12. Using the Second Principle of Induction.
4.12.b
4.12.d
4.3 Induction and Recursion
The Fibonacci Numbers
Progress Check 4.15. Every Third Fibonacci Number Is Even.
5 Set Theory
5.1 Sets and Operations on Sets
Set Equality, Subsets, and Proper Subsets
Progress Check 5.5. Using Set Notation.
5.5.a
5.5.b
5.5.c
5.5.d
5.5.e
5.5.f
5.5.g
5.5.h
5.5.i
5.5.j
More about Venn Diagrams
Progress Check 5.8. Using Venn Diagrams.
5.8.a
5.8.a.i
5.8.a.ii
5.8.a.iii
5.8.a.iv
5.8.b
5.8.c
5.2 Proving Set Relationships
The Choose-an-Element Method
Progress Check 5.13. Subsets and Set Equality.
5.13.a
5.13.b
Progress Check 5.14. Using the Choose-an-Element Method.
5.14.b
Proving Set Equality
Progress Check 5.17. Set Equality.
Disjoint Sets
Progress Check 5.21. Proving Two Sets Are Disjoint.
5.3 Properties of Set Operations
Proof of One of the Commutative Laws in Theorem 5.24
Progress Check 5.25. Exploring a Distributive Property.
5.25.a
5.25.b
Important Properties of Set Complements
Progress Check 5.27.
Progress Check 5.28.
5.4 Cartesian Products
Cartesian Products
Progress Check 5.30. Relationships between Cartesian Products.
5.30.a
5.30.a.i
5.30.a.ii
5.30.a.iii
5.30.a.iv
5.30.a.v
5.30.a.vi
5.30.a.vii
5.30.a.viii
5.30.a.ix
5.30.a.x
5.30.b
The Cartesian Plane
Progress Check 5.32. Cartesian Products of Intervals.
5.32.a
5.32.a.i
5.32.a.ii
5.32.a.iii
5.32.a.iv
5.32.a.v
5.32.a.vi
5.32.a.vii
5.32.a.viii
5.32.a.ix
5.32.a.x
5.32.b
5.5 Indexed Families of Sets
The Union and Intersection of an Indexed Family of Sets
Progress Check 5.35. An Infinite Family of Sets.
5.35.a
5.35.b
5.35.c
5.35.d
5.35.e
5.35.f
Progress Check 5.36. Indexed Families of Sets.
5.36.a
5.36.b
5.36.c
Progress Check 5.38. A Continuation of Example 5.37.
5.38.a
5.38.b
5.38.c
5.38.d
Pairwise Disjoint Families of Sets
Progress Check 5.41. Disjoint Families of Sets.
5.41.c
6 Functions
6.1 Introduction to Functions
The Definition of a Function
Progress Check 6.1. Images and Preimages.
6.1.a
6.1.b
6.1.c
6.1.d
6.1.e
6.1.f
The Codomain and Range of a Function
Progress Check 6.2. Codomain and Range.
6.2.a
6.2.a.i
6.2.a.ii
6.2.a.iii
6.2.b
6.2.b.i
6.2.b.ii
6.2.b.iii
The Graph of a Real Function
Progress Check 6.4. Using the Graph of a Real Function.
6.4.a
6.4.b
6.4.c
Arrow Diagrams
Progress Check 6.7. Working with Arrow Diagrams.
6.7.b
6.2 More about Functions
Functions Involving Congruences
Progress Check 6.10. Functions Defined by Congruences.
6.10.a
6.10.b
Equality of Functions
Progress Check 6.11. Equality of Functions.
Mathematical Processes as Functions
Progress Check 6.12. Average of a Finite Set of Numbers.
6.12.a
6.12.b
6.12.c
6.12.d
Sequences as Functions
Progress Check 6.13. Sequences.
6.13.a
6.13.b
6.13.c
Functions of Two Variables
Progress Check 6.14. Working with a Function of Two Variables.
6.14.a
6.14.b
6.14.c
6.3 Injections, Surjections, and Bijections
Injections
Progress Check 6.16. Working with the Definition of an Injection.
6.16.e
Surjections
Progress Check 6.17. Working with the Definition of a Surjection.
6.17.d
The Importance of the Domain and Codomain
Progress Check 6.21. The Importance of the Domain and Codomain.
Working with a Function of Two Variables
Progress Check 6.22. A Function of Two Variables.
6.22.a
6.22.b
6.22.c
6.4 Composition of Functions
Composition and Arrow Diagrams
Progress Check 6.26. The Composition of Two Functions.
Decomposing Functions
Progress Check 6.27. Decomposing Functions.
6.27.a
6.27.b
6.27.c
6.27.d
Theorems about Composite Functions
Progress Check 6.28. Compositions of Injections and Surjections.
6.28.a
6.28.c
6.5 Inverse Functions
The Ordered Pair Representation of a Function
Progress Check 6.32. Sets of Ordered Pairs that Are Not Functions.
6.32.a
6.32.b
The Inverse of a Function
Progress Check 6.33. Exploring the Inverse of a Function.
6.33.b
6.33.c
6.33.c.i
6.33.c.ii
6.33.c.iii
6.33.e
6.6 Functions Acting on Sets
Functions Acting on Sets
Progress Check 6.42. Beginning Activity 1 Revisited.
6.42.a
6.42.b
6.42.c
6.42.d
Set Operations and Functions Acting on Sets
Progress Check 6.44. Set Operations and Functions Acting on Sets.
6.44.a
6.44.b
6.44.c
6.44.c.i
6.44.c.ii
6.44.c.iii
6.44.c.iv
6.44.d
6.44.e
7 Equivalence Relations
7.1 Relations
Introduction to Relations
Progress Check 7.2.
7.2.a
7.2.a.i
7.2.a.ii
7.2.a.iii
7.2.a.iv
7.2.b
7.2.b.i
7.2.b.ii
7.2.b.iii
7.2.b.iii.A
7.2.b.iii.B
Notation for Relations
Progress Check 7.4. The Divides Relation.
7.4.a
7.4.b
7.4.b.i
7.4.b.ii
7.4.b.iii
Functions as Relations
Progress Check 7.5. A Set of Ordered Pairs.
7.5.a
7.5.b
7.5.b.i
7.5.b.ii
7.5.b.iii
7.5.b.iv
7.5.c
Visual Representations of Relations
Progress Check 7.8. The Directed Graph of a Relation.
7.2 Equivalence Relations
Directed Graphs and Properties of Relations
Progress Check 7.11. Properties of Relations.
Definition of an Equivalence Relation
Progress Check 7.13. A Relation that Is an Equivalence Relation.
Examples of Other Equivalence Relations
Progress Check 7.15. Another Equivalence Relation.
7.3 Equivalence Classes
The Definition of an Equivalence Class
Progress Check 7.16. Equivalence Classes from Beginning Activity 1.
Congruence Modulo \(\boldsymbol{n}\) and Congruence Classes
Progress Check 7.17. Congruence Modulo 4.
Properties of Equivalence Classes
Progress Check 7.19. Equivalence Classes.
7.19.a
7.19.b
7.19.c
7.4 Modular Arithmetic
The Integers Modulo \(\boldsymbol{n}\)
Progress Check 7.25. Modular Arithmetic in \(\boldsymbol{\Z_2}\text{,}\) \(\boldsymbol{\Z_5}\text{,}\) and \(\boldsymbol{\Z_6}\).
7.25.a
7.25.c
7.25.d
7.25.e
7.25.e.i
7.25.e.ii
8 Topics in Number Theory
8.1 The Greatest Common Divisor
The Greatest Common Divisor
Progress Check 8.4. Illustrations of Lemma 8.3.
8.4.a
8.4.b
8.4.c
The Euclidean Algorithm
Progress Check 8.6.
8.6.a
8.6.b
Writing \(\boldsymbol{\gcd (a, b)}\) in Terms of \(a\) and \(b\)
Progress Check 8.9. Writing the gcd as a Linear Combination.
8.9.a
8.9.b
8.2 Prime Numbers and Prime Factorizations
Relatively Prime Integers
Progress Check 8.12. Relatively Prime Integers.
8.12.a
8.12.b
8.12.c
Progress Check 8.15. Completing the Proof of Theorem 8.14.
8.3 Linear Diophantine Equations
Progress Check 8.22. An Example of a Linear Diophantine Equation.
8.22.b
Progress Check 8.23. Revisiting Beginning Activity 2.
Progress Check 8.26. Linear Diophantine Equations.
8.26.a
8.26.b
9 Finite and Infinite Sets
9.1 Finite Sets
Equivalent Sets
Progress Check 9.2. Examples of Equivalent Sets.
9.2.a
9.2.b
9.2.c
9.2 Countable Sets
Infinite Sets
Progress Check 9.12. Examples of Infinite Sets.
9.12.a
9.12.b
9.12.c
Countably Infinite Sets
Progress Check 9.13. Examples of Countably Infinite Sets.
9.13.a
9.13.b
9.13.c
9.3 Uncountable Sets
Uncountable Subsets of \(\boldsymbol{\mathbb{R}}\)
Progress Check 9.28. Dodge Ball and Cantor's Diagonal Argument.
Progress Check 9.30. Proof of Theorem 9.29.
9.30.a
9.30.b