21.
Let \(X = \{a,b,c,d\}\text{.}\) There are 355 distinct topologies on \(X\text{,}\) but they fit into the 33 distinct homeomorphism classes listed below. The list is ordered by decreasing number of singleton sets in the topology, and, when that is fixed, by increasing number of two-point subsets and then by increasing number of three-point subsets. Under which topologies is \(X\) connected? Prove your answer.
(a)
the discrete topology
(b)
\(\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}, X\}\)
(c)
\(\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}, X\}\)
(d)
\(\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, X\}\)
(e)
\(\{\emptyset, \{a\}, \{b\}, \{a,b\}, X\}\)
(f)
\(\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}\)
(g)
\(\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c,d\}, X\}\)
(h)
\(\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}, X\}\)
(i)
\(\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, X\}\)
(j)
\(\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,c,d\}, X\}\)
(k)
\(\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, X\}\)
(l)
\(\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, X\}\)
(m)
\(\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, X\}\)
(n)
\(\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, X\}\)
(o)
\(\{\emptyset, \{a\}, X\}\)
(p)
\(\{\emptyset, \{a\}, \{a,b\}, X\}\)
(q)
\(\{\emptyset, \{a\}, \{a,b\}, \{a,b,c\}, X\}\)
(r)
\(\{\emptyset, \{a\}, \{b,c\}, \{a,b,c\}, X\}\)
(s)
\(\{\emptyset, \{a\}, \{a,b\}, \{a,c,d\}, X\}\)
(t)
\(\{\emptyset, \{a\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}, X\}\)
(u)
\(\{\emptyset, \{a\}, \{b,c\}, \{a,b,c\}, \{b,c,d\}, X\}\)
(v)
\(\{\emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}, X\}\)
(w)
\(\{\emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, X\}\)
(x)
\(\{\emptyset, \{a\}, \{c,d\}, \{a,b\}, \{a,c,d\}, X\}\)
(y)
\(\{\emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, X\}\)
(z)
\(\{\emptyset, \{a\}, \{a,b,c\}, X\}\)
(aa)
\(\{\emptyset, \{a\}, \{b,c,d\}, X\}\)
(ab)
\(\{\emptyset, \{a,b\}, X\}\)
(ac)
\(\{\emptyset, \{a,b\}, \{c,d\}, X\}\)
(ad)
\(\{\emptyset, \{a,b\}, \{a,b,c\}, X\}\)
(ae)
\(\{\emptyset, \{a,b\}, \{a,b,c\}, \{a,b,d\}, X\}\)
(af)
\(\{\emptyset, \{a,b,c\}, X\}\)
(ag)
\(\{\emptyset, X\}\)